The requirement of reversible cysteine sulfenic acid formation for T cell activation and function.

نویسندگان

  • Ryan D Michalek
  • Kimberly J Nelson
  • Beth C Holbrook
  • John S Yi
  • Daya Stridiron
  • Larry W Daniel
  • Jacquelyn S Fetrow
  • S Bruce King
  • Leslie B Poole
  • Jason M Grayson
چکیده

Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.

Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also ...

متن کامل

Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone.

Since its discovery almost 40 years ago, S-hydroxylation ( SOH) of cysteine thiol side chains at active and allosteric sites within proteins has emerged as a central post-translational modification. At present, more than 200 transcription factors, signaling proteins, metabolic enzymes, proteostasis regulators, and cytoskeletal components that undergo sulfenic acid modification have been identif...

متن کامل

Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid

Oxidation of a protein cysteine thiol to sulfenic acid, termed S-sulfenylation, is a reversible posttranslational modification that plays a crucial role in regulating protein function and is correlated with disease states. The majority of reaction-based small molecule and immunochemical probes used for detecting sulfenic acids are based on the 5,5-dimethyl-1,3-cyclohexanedione (dimedone) scaffo...

متن کامل

Strained Cycloalkynes as New Protein Sulfenic Acid Traps

Protein sulfenic acids are formed by the reaction of biologically relevant reactive oxygen species with protein thiols. Sulfenic acid formation modulates the function of enzymes and transcription factors either directly or through the subsequent formation of protein disulfide bonds. Identifying the site, timing, and conditions of protein sulfenic acid formation remains crucial to understanding ...

متن کامل

Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling?☆

The reversible oxidation of protein cysteine residues (Cys-SH) is a key reaction in cellular redox signaling involving initial formation of sulfenic acids (Cys-SOH), which are commonly detected using selective dimedone-based probes. Here, we report that significant portions of dimedone-tagged proteins are susceptible to cleavage by DTT reflecting the presence of perthiosulfenic acid species (Cy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 179 10  شماره 

صفحات  -

تاریخ انتشار 2007